Chat templates
SambaStudio allows you to add a chat template when uploading your own checkpoint. SambaStudio checkpoints also include a default chat template that can optionally be inherited when bringing in your own checkpoint or launching a training job.
Chat templates background
Chat templates specify how to convert conversations, or user inputs, into a special string format that the model expects. Chat templates provide the ability to submit meaningful inputs allowing the selected model to provide desired outputs.
Chat templates can vary based on factors such as the model architecture and how a model is fine-tuned. Typically model architectures, or model families, include an associated chat template. For example, the Llama 2 family checkpoints generally use the following chat template.
<s>[INST] <<SYS>>
{system prompt}
<</SYS>>
{user message} [/INST]
Additionally, a checkpoint can be fine-tuned to use a different chat template. For example, Nous-Hermes-Llama2-13b, which is considered a fine-tuned derivative of Llama 2, uses the following chat template.
### Instruction:
<prompt>
### Input:
<additional context>
### Response:
<leave a newline blank for model to respond>
Lastly, chat templates can vary based on the application. For example, a checkpoint can use a different template for multi-turn or single-turn applications.
The same checkpoint can have multiple chat templates and different checkpoints can use the same chat template. |
View a chat template in a model card
The chat template for a model can be found in the corresponding model card.
Edit chat templates in tokenizer_config.json
Checkpoints uploaded to SambaStudio typically contain a tokenizer_config.json
file. In this config file, a field called chat_template
specifies the prompt template for a checkpoint in Jinja format.
Some checkpoints may already contain a chat_template
field in the tokenizer_config.json
file specified by the checkpoint author. If this is the case, the chat_template
field will be consumed and read as a single string and interpreted as a jinja template. The template will be applied automatically if the process_prompt
field is set to True
. For example, the Hugging Face version of meta-llama/Meta-Llama-3.1-8B-Instruct contains a chat_template
field in its tokenizer_config.json
file, as shown below.
An empty string will be read as a valid prompt template ( |
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
How to write a prompt template using Jinja
To write a custom chat template that gets applied to a checkpoint by default, we use the Jinja template format. Jinja is a templating language where code can be written to generate text, based on varying scenarios and variables. Creating a Jinja template for a Large Language Model (LLM) involves setting up a structure that the LLM can dynamically populate with data.
{% if messages[0]['role'] == 'system' %}
{% set loop_messages = messages[1:] %}
{% set system_message = '<<SYS>>\n' + messages[0]['content'].strip() + '\n<</SYS>>\n\n' %}
{% else %}
{% set loop_messages = messages %}
{% set system_message = '' %}
{% endif %}
{% for message in loop_messages %}
{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}
{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
{% endif %}
{% if loop.index0 == 0 %}
{% set content = system_message + message['content'] %}
{% else %}
{% set content = message['content'] %}
{% endif %}
{% if message['role'] == 'user' %}
{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}
{% elif message['role'] == 'assistant' %}
{{ ' ' + content.strip() + ' ' + eos_token }}
{% endif %}
{% endfor %}